An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect
نویسندگان
چکیده
BACKGROUND Most randomized controlled trials with a time-to-event outcome are designed and analysed under the proportional hazards assumption, with a target hazard ratio for the treatment effect in mind. However, the hazards may be non-proportional. We address how to design a trial under such conditions, and how to analyse the results. METHODS We propose to extend the usual approach, a logrank test, to also include the Grambsch-Therneau test of proportional hazards. We test the resulting composite null hypothesis using a joint test for the hazard ratio and for time-dependent behaviour of the hazard ratio. We compute the power and sample size for the logrank test under proportional hazards, and from that we compute the power of the joint test. For the estimation of relevant quantities from the trial data, various models could be used; we advocate adopting a pre-specified flexible parametric survival model that supports time-dependent behaviour of the hazard ratio. RESULTS We present the mathematics for calculating the power and sample size for the joint test. We illustrate the methodology in real data from two randomized trials, one in ovarian cancer and the other in treating cellulitis. We show selected estimates and their uncertainty derived from the advocated flexible parametric model. We demonstrate in a small simulation study that when a treatment effect either increases or decreases over time, the joint test can outperform the logrank test in the presence of both patterns of non-proportional hazards. CONCLUSIONS Those designing and analysing trials in the era of non-proportional hazards need to acknowledge that a more complex type of treatment effect is becoming more common. Our method for the design of the trial retains the tools familiar in the standard methodology based on the logrank test, and extends it to incorporate a joint test of the null hypothesis with power against non-proportional hazards. For the analysis of trial data, we propose the use of a pre-specified flexible parametric model that can represent a time-dependent hazard ratio if one is present.
منابع مشابه
Author's response to reviews Title:An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect. Authors:
متن کامل
A multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کاملThe evaluation of Cox and Weibull proportional hazards models and their applications to identify factors influencing survival time in acute leukem
Introduction: The most important models used in analysis of survival data is proportional hazards models. Applying this model requires establishment of the relevance proportional hazards assumption, otherwise it world lead to incorrect inference. This study aims to evaluate Cox and Weibull models which are used in identification of effective factors on survival time in acute leukemia. Me...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملInvestigating the Theory of Survival Analysis in Credit Risk Management of Facility Receivers: A Case Study on Tose'e Ta'avon Bank of Guilan Province
Nowadays, one of the most important topics in risk management of banks, financial, and credit institutions is credit risk management. In this research, the researchers used survival analytic methods for credit risk modeling in terms of the conditional distribution function of default time. As a practical task, the authors considered the reward credit portfolio of Tose'e Ta'avon Bank of Guilan P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014